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fj THE ASYMPTOTIC VARIANCE OF HIGHER ORDER CROSSINGS

1K By Benjamin Kedem and George Reed

éé 1. Introduction

.% The computation of the variance of the number of axis crossings
:33 by a stationary process entails technical difficulties in both the

?S continuous and the discrete time cases. What makes this problem

o5 so intractable is that the variance is expressed via quantities which
?5 involve conditional intensities and fourth order orthant probabilities
?: which are difficult to compute. This is so even in the Gaussian

o case. See Cramer and Leadbetter (1967), Sec. 10.7, Cox and Isham

Es (1980) pp.33,87, Kedem (1980) p.68. On the other hand when the

;Q process is sufficiently oscillatory, it is possible to estimate the

. variance under suitable conditions by a simple expression. This is

shown here by examining the variance of the higher order crossings.

* ..'S ."‘:\-.f

a4,

The notion of higher order crossings has been introduced by

-

[- -4

Xedem and Slud (1981), (1982) as follows. Let {Zt}t:—m be a

stationary discrete-time process and define a sequence of binary

% . processes by

" 1 if vk'lzt =0

w7 (k) _ _

':" (1) xt = [ k - 1,2,0-0,
X 0 otherwise
ﬁ where V is the backward-difference operator, VZt = Zt - Zt-l'
"‘3

'? Then

..%

Py N-1

) - (k) (k)

) (2) DN G z IX;,, # X7

‘ t=1

5

b,




k- 1 }N
t t=1’
the (number of) higher order crossings of order k associated with

is the number of axis-crossings by {V and is called

{Zt}' The main result of higher order crossings is (Kedem and

Slud (1982)) The

Higher Order Crossings Theorem (HOCT): If {Zt} is a strictly

stationary process with finite variance and P (Zt = ZOVt) = 0 and

if the spectral distribution function F satisfies the condition

dF(w) > 0 then

...01010101... with probability 1/2

. (k)

(i) {Xt } =
...10101010... with probability 1/2

(i1) 1im 1im N7'D_ , = 1  with probability 1.

k+o N+ k,N

Thus we see that D eventually increases with k for sufficiently

k,N
large N. This monotone property of higher order crossings can be
associated with the amount of information they carry as exemplified
in Kedem and Slud (1981), where a discrimination statistic made of
higher order crossings is introduced. However the HOCT does not
tell us the rate of increase in the Dk,N' The present paper
provides a refinement of the HOCT in that we establish under some
conditions the rate of decrease in Var(Dk,N) as k » = for

fixed N. The fact that this variance should decrease is apparent

from the HOCT since the probability of two consecutive 1l's in

(k)}N
t=1

aggociated with (X

{x approaches zero. More precisely, define the intensity

(k)}

(k) (k) _ (k) _ .
(3) Ay = P(X, = 1]x tJ-1), 32 1,245000
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Then our main result states that

Theorem 1. Let {Zt} be an m-dependent stationary Gaussian

sequence. Then for fixed N

Var(Dk N)

(u) lim ——————%—7 = 1.

k+» (N- l)A

The limit (4) certainly holds for any finite moving average. An

explanation of (4) is provided by the intuition that by the HOCT,

{X (k } "becomes Markovian" and A(k) + 0 as k » =, Note that if
{x ik)} is truly Markovian then Var(Dk N) = (N- l)x(k)(l-xik))
b

which yields (4) when Aik) approaches zero. See Kedem (1980)

Chapter 3.
Since for moderate and large k, {Vk-lzt} becomes oscillatory,

i.e., D is large, it is apparent from the HOCT that (4) sheds

k,N

& great deal of light on the behavior of the variance of Dl N

(number of axis crossings) for oscillatory processes. It should

be noted that (4) is not entirely intuitive since in general we have

D
k,n
Var(D ) (N-1)Var(—2+=)
_IGN - s (-DaQ- b
(N-l)kl Al

for all k, and for N 2 2. Other than N = 2, this general
bound has little resemblance to (4). On the other extreme, many
gsimulations with low order autoregressive moving average processes,
at least for small k, suggested that the limit should be close to
zero. It is only as k increases that (%) holds. It seems to us

therefore that for large k, in lipht of our earlier comment, the
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assumption that {Xik)} is approximately Markovian is not entirely
unrealistic as it immediately leads to (#). In this paper however
this assumption is not made.

The proof of Theorem 1 is carried out by first proving a series
of lemmas. In Section 2 we establish a two sided inequality while
in Section 3 we construct certain continuous differentiable functions
which establish the rates of convergence of the correlations of

{Vth} as k » =,
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o 2. An Inequality

N

Y In order to prove and motivate Theorem 1 we need to establish
;ﬁ a few basic facts concerning axis crossings by Gaussian sequences.
_Y

:§ From now on it will be convenient to suppress k in Agk) and in
- xik) and we shall simply write Xj and X, with the understanding
2 that both quantities depend on k.

i First observe that Dk N can be written as a sum

S ’

e = + +,...+

% (5) Dk,N d2 d3 dN

Y]

N where

4 = + -

¥ (6) dt Xt Xt-l thxt—l

¥

A . . . .

X and is also a function of k since Xt is.

3 Lemma 1. Let {Zt}‘::_o0 be a stationary Gaussian process. Then
§ uniformly in t

. 7 COV(Xt-j’dt) = 0, J o= 0,%l,...

3 Proof. The Gaussian assumption implies that

> 1 1 1 1

+ - = = = + = . - —

5 COV(Xt-j’Xt Xt—l 2tht-l) [2 AJ u] [2 Aj-l l+]

2

5 1 1 1 1 1

- —_ + = = - — - =

N 2lg Mty MrE Mot Ml 7O
N X 1,1 . -1 . .
- by noting that Aj =35 + = Sin p. where oj is the correlation
P

- function of {Zt}. (See Kedem (1980), p.33.) The orthogonality
o

'2 palation (7) implies that Xt—j and dt are independent since

both variables are binary. We can therefore rewrite Lemma 1 as

[hNCRONERLY #

XN
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Lemma 1'. Let {Zt}t=_°° be a stationary Gaussian process. Then
(8) COV(g(xt-j)’dt) =0, j=0,%1,...
for any function g.
Next we examine the relation between Xt-jxt—j+l and dt’

Unlike the orthogonality relation (7) the covariance between the
last two quantities cannot be evaluated directly but may be
approximated. Without loss of generality we will focus on

COV(dZ’XtXt-l)‘

Lemma 2. Let {Zt}:=_°° be a stationary Gaussian process. Then

we have the two sided inequality

(%) ma"(%' xt_l-—%- )'t-3--]2; MY %’ Ai"% )‘t-l+%_ )‘t-3-% )‘1+% Ai)
Cov(dy,X.X, ;) S Z AL

Proof. TFirst note

Cov(d,sX X, ;) = Fd,X X - EdEX X, | 5 (EX.X )(1-Ed)) = 2l

Focr the left hand side we have four cases corresponding to the
” 3
"removal" of either Xl or X, or Xt or X, q- Thus for

example if we "remove" X, we have

1l
- - X = 2= 4 =
2EX1X2Xt_1Xt > 2EX2Xt_l ¢ 2f m

&=
>

[
>
+

(Lol
>

o

from which follows that
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and similarly for the other three cases.

Now observe that in general
(10) Var(dt) = Al(l-kl)

and therefore by Lemma 1, Theorem 1 is proved if we can show that

COV(ds’tht—l) = Cov(ds,dt) = o(Al) for arbitrary t,s. However

this is not immediate from Lemma 2 and requires some careful con-
siderations to be discussed rigorously in the following Section.
It should be made clear though that (9) is instrumental in proving
that Cov(ds,dt) = o(Al). We can support this claim by resorting

to an example heuristic in nature.

2 > - j
= _1 + _1 -
Examgle 1. Assume X | is Markovian. Then Aj 2 3 (2 Xl 1)

and so

1 .1 . _1)t-3
2O _7h_g) = 7 A G =D

Then the 1left hand side of (9) becomes

e _yt3 1, 1,2
Cov(dz,xtxtﬁl)z max(E Al(xl-l)(le 1) 5 A1+ > Al’
1l - _ t-3_l _1_ 2 - o
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since -% Al is always eliminated from one of these las*+ two

expressions regardless of whether t is odd or even. Thus for

a Markovian Xt (9) and Lemma 1 imply
(11) Cov(dz,dt) = o(xl)

Another indication that (11) is plausible is furnished by the next

numerical example.

Example 2. Assume {Z_} is a Gaussian white noise. Then

t
- l l . -l -—]-(_
(2 M, S gt g 8in (k+1)~
and
(13) )‘2 = %. + % Sin"l [-1+2(k__]+<l)2 + 2( 2k;1 )] )
(k+1) " (k+2)

Incidently, here we see the direct dependence of Al,x2 on k.
Now define A; by

(14) AR = % + % Sin~tr-1+2()2

2 k+l l

We maintain that as k + =« A; approximates Xz very closely.

This can be best seen from the following calculations.

* %
k A2 A2 Al X2 A2
103 0.97155556 0.97154135 0.001422932 0.00001u421

5 K103 0.98726994 0.98726865 0.00636567 0.00000129

10" | 0.99099766 | 0.99099720 | 0.00450140 0.00000046
10° | 0.99715295 | 0.99715295 | 0.00142353 0
10° | 0.99309968 | 0.93909968 | 0.00045017 0
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We see that as k » ® the white noise case implies

= * (
(15) 12 AZ + O‘ll).

This can also be verified directly from (12)-(13). It follows

that as k + «

Sin-l(-1+2pi) + o(h))

N o

sin'l(-cos 2n(x1-%-)) + o()\l)

IR

(16)
C

N
E N

T 1l
5" 2n(5— Al)] + o(Al)

1]
—
1

2A1 + o(kl).

But in general, for any Gaussian stationary sequence

(17) ' Cov(dt,dt+1) = -

and so, in the white noise case

- _ 32 _
COV(dt’dt+l) = o(Al) Al = o(kl).

This example indicates that we may also have Cov(dt,ds) = o(Al),
s # t, for any two terms in (5). However the proof of this
assertion requires the establishment of some further facts and

the use of (9).




3. Proof that Cov(dt,ds)= o(>.?

As stated in Section 2 it is sufficient to show

COV(dZ’XtXt-l) = o(Al) in order to complete the proof of the
theorem. From (9) it is clear that Cov(dz,XtXt_l) = o(Al) 50
the problem reduces to showing o(Al) < Cov(dz,xt,xt_l) using
the left hand side of (9).

It is more convenient at this point to express Aik) in terms
of the correlations of the kth differenced process, pt,k' From
Kedem (1980) we have Aik) = % + % sin-lpt,k. Ignoring the Ai

term in (9) and suppressing the k, it will be sufticient to show

(18)

1 1 . -1 -1

lim(L sin” "p - — sin " p Jio L sin
b t-1 ug b 27

k>

1.1 . -1 _
Ol)/(g*'; sin Dl) = 0

or

(19)

1 1 . =1 -1

lim(- = sin” ) + = sgin "p

-1 1,1 .
k> b t-1 um sin Dl)/(5+.-"- sin

pl) = 0.

11
b 27

t-3
The solution involves two ideas. First treating all functions
of interest as functions of pl,k since this is the basic variable
at hand as is apparent from the HOCT, and secondly, circumventing
the problem that both numerator and denominator in (17), (18) go
to zero by constructing an equivalent limit with continuous differ-
entiable functions and using 1'Hopital's rule.
The following lemmas will show how to construct the equivalent
limit by replacing pt,k with an appropriate function. First
define the following notation associated with the k'th and

(k+1)'st differences.

.- .« e e .« - et . . . . e e e - B ot
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= 11
J Pg.x ° Pi,ka1
{
- (r)
]
N pV,k pr,k+l
R . Pu,k+17Pyik
‘ vk P =P
. 1,k+17%1,k
; C1 z Cl[-l,pl l] = set of continuously differentiable functions
- b
on the interval [-1,p ]

Again, as above, whenever it is not confusing the subscript k

is suppressed.

Lemma 3. If 1lim RV X exists then for each sequence of ordered
k> ?

pairs {(pl,k’pr,k)}:=l’ r fixed integer =2, there exists a

function pr(pl) € Cl such that

(i) °r(°1,k) =

r,k
de
(ii) lim, —L = a is independent of the function
+ dp r
p,>-1 1
1
constructed.

(iii) a, satisfies the difference equation:

_ r
a.41 " 2ar(1-2al) + a,., * (-1) 2 where
dp
. v
a = 1lim _—
1 pl*-l+ dey
a0 = 0.

Note that pl is p1 K but at the same time it is used as the
9y
variable of differentiation. Also, a; is defined ditferently

from a2,a3,... .

...................
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e Proof. We first construct pv(pl) from the pairs

AN —_—

{\‘ {(pl,k’pv,k)}k=l and then the other functions will be produced

23 inductively.

i By a direct computation we have 1lim p = -1 and it has also

L ke 15K

. been shown that {pl k}m_ is a strictly decreasing sequence

. A ’ k=1

:g (Kedem (1982)) to -1. In what follows the two equivalent notions

Pl

’g: of k » = and pl + -1 are used interchangebly without loss of

oA generality.

ot

f? Since {01 k}k'l is strictly decreasing, for any finite set of

) s =

S n i

o values {(pl,k’pV,k)}kzl we can construct a function

= n{M o) € clro o, ;1 such that

BN v 1 l,n’71,1

-

A (n) _

PN Ny (pl,k) = pv,k and

it dngn)

b — (p ) = R .

i de, "1,k v,k

- . n)

If we let nén+l)(pl) be the extension of né (Dl) then we can

3

:3 define

3 N ¢ )

Polp.) = 1limn (p,) for p. € (-1,p ]

_ v e V1 1 P1,1

F ) (p.)

" and (=1) = 1lim pg( = lim P (p

= Py rm TV P1k U A

kot 1

N 9.1 Lin Py

. and —=——(-1) = 1lim R = im | —.

& doy Jowo VoK o »-1" %1

% By the construction of n(n)(p )y, pglp,) € C'(-1,p. .1 and

- v 1 LA S 1,1

* since p(-1) is well defined by the HOCT and d—p—v(-l) is well
1

s Ll

defined by our assumption 1lim Rv K exists, then pv(pl) € C'.
b

-

-'-'-': [N
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dpv
To see that lim TN ie¢ irdependent o the construction
pl*-l 1l
of pv(pl), note that any Cl function satisfying (i) must
do

satisfy lim, — = 1im R . This is so simply since by con-

+ dp V,k

p>-1 1 k0 dp

struction for every ¢€3K > for k > K lRV,k"aag(pl,k)l < e.

And so 1lim R is independent of the construction of

ko0 V,k pv’
We can now define the functions pr(pl)' Since

Py = (2p1-p2-1)/2(1-pl) we have

- - + hnd .
Pa x 21 °1,k)pv,k 200 -1

So we can define

(20) p2(pl) = -2(l-pl)pv(pl) + 201 - 1.
. 1
In general, assume th? :x1stence of pr-l(pl)’pr-2(pl) € C°. Then
r) _ - _ _ .
from the fact that Py = (ZOr Prel pp_l)/2(l pl) we obtain
(r-1
= - - + -
Pr .,k 2Q2=p1 1Pg  * Pp1k T Pro2k
and we can define
(21) o (p) = =2(1-p 5 Hp ) + 20 (p.) - o . (p))
r 1 1°"V 1 r-1 "1 r-2 "1
- 1
where pér J)(pl) € C can be defined since we can always construct
a function Eér-l%pv) using the same sequence of pairs and the same
constructions that we used for pr-l(pl)’ so let pér°l)(pl) =
-(p-1)

Py (pv(pl)) a composition of Cl functions.
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Hence for each r there exists p (o

- l) satisfying (i) and

(ii). To generate the difference equation in (iii) consider

(r)

= - - ( -
pr+1(pl) 2(1 01)0‘7 .pl) + 2pr(pl) pr-l(pl)'
Differentiate
(r)
dpl v 1 1 dpl dpl dp1
and take the limit as Py > -l+
= - - + - o
(22) a4, 2(-1) 4 lim, 3o ) 2a a._q
p,>-1 1
1
dpér) dpér) dpv
We can write -—— = ——— —— Dbut note that
de dp doe
1l \") 1
dphﬂ do dpér)
1lim —Y = 1lim —L or lim T aa and therefore
pl+— v pl->- 1 p1->- 1
(22) becomes
a = 2(-1)¥ - ya a, +2a - a
r+l r1l r r-1

which can be rewritten to give the difference equation in (iii).

This completes the proof of Lemma 3.

+
Lemma 4. If 1lim RV x ° 1 then a_ = (-DF 1 r2.
k>
Proof. 1lim RV K 1 means a, = 1 so that the difference equation
T ke ’
becomes:
r
+ + = -
a .1 2ar a._1 (-1)" 2.

A specific solution is a_ = (-1) r°. The general solution




to the homogeneous equati + + = s
gene quation a..; 2ar a4 0 is

al-1)F + 8(-1)F p.

But using (20) a, = -4 and using (21)(or simply (22) with

r = 2) with r = 3 az = 9. These conditions result in a = B = 0

and thus a, = (-1)F*L r2.
Lemma 5. 1lim R = 1 if the process is m-dependent.

v,k

k>

Proof. The result can be derived from the expression for Pl .k
b

given in Kedem and Slud (1981):

(?k ) . [(Zk\ /2k )J )k
- p + - ...t (<D
k-1 1 k) \k-z' k+l

P = .

1,k 2K , 2k

( )- 201( \ +...04 (-1)k2pk
k - k-1

(23)

For white noise, it is a straightforward computation since

- _ _k_ .
pl,k = e In general if Py

that there are no new correlation terms in (23) as k increases.

0 for i >m, let k >m so

Then pl,k+l - pl,k can always be written as the quotient of two

finite polynomials in k: Pl(k)/Pz(k)' Since there are no new

terms in the expression, as k increases, then pv,k+1 - ov,k

will be the quotient of the same two polynomials only in k + 1:

Pl(k+1) P2(k)
Pl(k+l)/P2(k+l). Hence RV,k = Pl(k) . P2(k+l) and since these

are finite polynomials in k, 1lim Rv K ° 1
k-»o 3

With these results, it is now possible to cvaluate (18) and

(19). If t 1is even consider (18). Using Lemma 3 we can write
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an equivalent limit by replacing Pe Kk with pt(pl) and considering:

(24)
3 . 1 . - 1 . -1 1 . -1 1,1 . -1
5 011T1+(u“ sin pt_l(pl) 4. sin pt_3(pl)— 3~ 7. sin pl)/(§+-; sin" 7o)
. 1l
Using 1'Hopital's rule:
11 dogo1 11 %3 1
y 1-02 dpl 4 . 5 dpl 2 .
(28)  lim, t-1 t-3 L
pl+-l 1
/ 2
l-pl

This limit can be evaluated if we assume m-dependence. Using

2
L 4% and 5 te th 1i | 1 “20y 1
emmas an we note at im | —x = im —_— = .
p,+-11 1-p2 a1t do, — Ta]
1 t 1 -20, 3=
Py
Z 2
A T
Hence, 1im = . Thus (25) becomes:
py*>-1" A7 T4
a a
(26) 1 __t=-1 _ 1  "t-3 21
4 4 2 °
at—l /'at-3|
When t 1s even
a = +(t-l)z, a z +(t-3)2

and (26) equals

N
(1]
o

1 1
E(t-l) - E(t—3) -

When t 1is odd a similar computation shows (19) reduces to zero
as well. So for all t Cov(d,,X X ;) = o(};). This completes

the proof of the theorem.
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A(k)/x(k+l)

1 1 + 1, k *+ o, we also hdve

Since by Lemma 5

Corollary 1. Under the same conditions as in Theorem 1

)
. CoviDy nsDyyy N
lim —15) = 1.
K> (N-1)2

Proof. Use Cauchy-Schwarz inequality.

As the m-dependence assumption was used only in showing that

R 1, k * », it is clear that the theorem can be extended

-»>
v,k
to cover a more general case for which this requirement still holds
provided pj approaches zero fast enough. We conjecture that
Theorem 1 holds true at least for stationary autoregressive moving

average Gaussian sequences. The proof of this requires a more

careful examination of (23). -
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